Fabrication and Characterization of Superconducting NbN Nanowire Single Photon Detectors

Jet Propulsion Laboratory, California Institute of Technology

Jeffrey A. Stern (Jeffrey.Stern @JPL.NASA.GOV)

William H. Farr (William.H.Farr @JPL.NASA.GOV)

Outline

- Introduction and Motivation
- Device Fabrication
- Results

Measurement apparatus
Detector Efficiency (DE)
Pulse Shape and Recovery Time
Linearity

Conclusions and Future Work

Introduction and Motivation

- High Speed, Single Photon Detectors have use in communication, quantum optics and CMOS analysis.
- SNSPDs have demonstrated high DEs, low dark-counts, and fast response times.
- Technical challenges include making larger detectors, increasing DE and achieving fast recovery times.

Operation of SNSPD Detectors

- A thin (<5 nm) narrow (<120 nm) NbN wire is current biased just below its critical current.
- The wire is formed into a meander.
- A single photon absorbed in the wire rapidly creates a large number of quasiparticles, which depresses Ic.
- The bias current locally exceeds Ic causing a voltage spike and a drop in the bias current.
- Recovery of the bias current is set by the Kinetic Inductance (L/R time constant).

NbTiN Deposition

- C-Axis Quartz and Sapphire are used for their isotropic dielectric constant and high thermal conductivity.
- Deposition is done in a load locked UHV system.
- An MgO buffer layer is used to stabilize the NbN.
- Substrates are heated to 500-600 C.
- NbN is DC magnetron sputtered from a target in an Ar-N₂ mixture.
- RF bias is applied to the substrate to promote smooth film growth.
- Typical films are 500-800 Ohms/square with Tc=10-12 K.

Fabrication Details

(PMMA Process)

- Titanium-Gold wire layers are deposited after a brief Ion mill to improve the interface by liftoff.
- PMMA is written at 100 keV
- First SF₆ etch
- Liftoff SiO-Al which acts as a cavity and etch mask
- Second SF₆ etch
- More Recent devices use HSQ resist

SEM image of a 10 by 10 micron SNSPD with 80 nm wires fabricated using HSQ e-beam resist.

Backside Coupled SNSPD

Measurement Apparatus

Electrical Response of a 15x15 µm SNSPD to 1064nm radiation

The rise time is 200 ps and the recovery time is 15 ns.

Detector Efficiency vs Bias Current

(15 by 15 μ m device 12 nm wires on 24 nm spacing. T=4.2->3.1 K)

Interarrival Time Plot

(5 by 5 µm device 12 nm wires on 24 nm spacing)

Detector Linearity

Conclusions

- We have fabricated large area SNPDs.
- Detector Efficiencies of 40% were achieved.
- Linearity of detectors is good.
- Recovery times have been measured using interarrival time statistics.

Future Work

- Improve DE (improved uniformity, lower operating temperatures and improved optical cavities.)
- Increase operating speeds using arrays of smaller detectors.
- Demonstrate SNSPDs in optical communication systems.
- Absolute measurement of DE using correlated photons.

